
GraphFuzz: Library API Fuzzing with Lifetime-aware Dataflow
Graphs

Harrison Green
hgarrereyn@forallsecure.com

ForAllSecure
U.S.A.

Thanassis Avgerinos
thanassis@forallsecure.com

ForAllSecure
U.S.A.

ABSTRACT
We present the design and implementation of GraphFuzz, a new
structure-, coverage- and object lifetime-aware fuzzer capable of
automatically testing low-level Library APIs. Unlike other fuzzers,
GraphFuzz models sequences of executed functions as a dataflow
graph, thus enabling it to perform graph-based mutations both at
the data and at the execution trace level. GraphFuzz comes with
an automated specification generator to minimize the developer
integration effort.

We use GraphFuzz to analyze Skia—the rigorously tested Google
Chrome graphics library—and benchmark GraphFuzz-generated
fuzzing harnesses against hand-optimized, painstakingly written
libFuzzer harnesses. We find that GraphFuzz generates test cases
that achieve 2-3x more code coverage on average with minimal
development effort, and also uncovered previous unknown defects
in the process. We demonstrate GraphFuzz’s applicability on low-
level APIs by analyzing four additional open-source libraries and
finding dozens of previously unknown defects. All security relevant
findings have already been reported and fixed by the developers.

Last, we open-source GraphFuzz under a permissive license and
provide code to reproduce all results in this paper.

ACM Reference Format:
Harrison Green and Thanassis Avgerinos. 2022. GraphFuzz: Library API
Fuzzing with Lifetime-aware Dataflow Graphs. In 44th International Confer-
ence on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510228

1 INTRODUCTION
Fuzzing has become the de-facto standard for identifying new secu-
rity vulnerabilities and ensuring software reliability. From common
open source libraries to browser component testing [1] and from
safety critical systems to automotive and aerospace standards [2],
the entire industry is adopting fuzzing and finding thousands of
critical issues before they occur in production.

The constantly increasing need for better automated testing has
led to the development of a taxonomy of fuzzer types. Coverage-
guided (grey-box) fuzzers such as libFuzzer [3] have gained sig-
nificant adoption and visibility within the industry. These fuzzers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510228

consume feedback information from the target (edge coverage,
value coverage, or similar) to guide test case selection and mutation.
Coverage guided fuzzing is an optimization problem: the goal is to
discover a corpus of test cases that maximizes coverage for a target.
Intuitively, maximizing coverage leads to edge cases, erroneous
behavior, and/or security vulnerabilities.

At the same time, the art of model-based (or structure-aware)
fuzzing is growing rapidly as it offers two significant benefits. First,
it enables fuzzing targets which expect complex, structured inputs.
At the simplest level, a model-based fuzzer may simply unpack or
post-process the input byte string. For example, the LLVM project
[4] provides FuzzedDataProvider.h (FDP): a utility header file that
splits a single fuzzer input into multiple smaller inputs. More com-
plex model-based fuzzers, such as libprotobuf-mutator (LPM) [5],
use custom generators and mutators to fuzz structured objects like
Protocol Buffers.

Second, model-based fuzzers realize efficiency improvements
over analogous unstructured fuzzers by avoiding bad inputs. Tar-
gets that validate their input before proceeding (i.e. through the use
of checksums) are effectively un-fuzzable without manual counter-
measures such as disabling validation at fuzz-time. Unstructured
fuzzers simply get stuck trying to brute force input after input.
Model-based fuzzers bypass this problem entirely by programmati-
cally synthesizing valid test cases. For example, a checksum-aware
fuzzer needs only to compute and set the correct checksum for a
given input.

Despite the recent surge in fuzzing research, there is a noticeable
lack of systems capable of fuzz-testing C/C++ libraries. Existing
grey-box fuzzers such as libFuzzer [3] are particularly well suited
for fuzzing one or two endpoints at a time but require manual effort
(using FDP for example) to scale to multiple endpoints at once.
CSmith [6] can synthesize realistic C code, but recompiling at each
iteration is expensive when the target is a C library and not the C
compiler. FUDGE [7] is a promising meta-fuzzing technique that
automatically generates harnesses by analyzing and slicing a seed
corpus of client-side code; however, it relies on Google’s internal
infrastructure and is not open source.

To address this gap, we introduce the concept of dataflow graph-
based fuzzing in which a Library API interaction is represented as
a dataflow graph. We describe algorithms for dataflow graph muta-
tion, generation and execution in the context of C/C++ libraries. We
open-source our implementation of dataflow graph-based fuzzing
called GraphFuzz under a permissive license and we demonstrate
its effectiveness by finding bugs in real-world targets and quan-
titatively benchmarking its performance against state-of-the-art

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Harrison Green and Thanassis Avgerinos

harnesses in the Skia Graphics Library. Additionally, we briefly sur-
vey the field of model-based API fuzzers to compare recent works
and understand the benefits and drawbacks of various systems.

Overall, GraphFuzz makes the following contributions:
1) Model-based API Fuzzer Survey. We present a taxonomy

for model-based fuzzers developed until today and show where
GraphFuzz fits within the design space.

2)Dataflowgraph-based fuzzing.We formally define dataflow
graph-based fuzzing and introduce algorithms for performing graph
mutation and generation in the context of coverage-aware fuzzing.

3) GraphFuzz for C/C++. We introduce our open-source im-
plementation of dataflow graph-based fuzzing called GraphFuzz
that is capable of semi-automatically fuzz-testing C and C++ li-
braries. We validate this technique by finding real world bugs and
quantitatively benchmarking its performance against current state-
of-the-art harnesses.

Section 2 provides a taxonomy for model-based API fuzzers and
describes how GraphFuzz fits into the design space. We formally
define the concept of dataflow graph-based fuzzing in Section 3 and
in Section 4, we describe our open-source implementation called
GraphFuzz. Section 5 evaluates GraphFuzz on real-world targets.
We discuss limitations in Section 6 and the paper concludes in
Section 7.

2 MODEL-BASED FUZZING
Model-based fuzzers (sometimes called structure-aware or grammar-
based) use a model to inform test-case generation and mutation.
The model constrains generated test cases and the search space of
the fuzzer. When used correctly, models enable fuzzers to generate
interesting inputs more efficiently than an unstructured fuzzer.

2.1 Model Domain
Model-based fuzzers specify (often implicitly) a model domain (D)
that describes the space of possible fuzzer test cases. This domain
describes the internal structure of each test case and therefore re-
stricts the types of mutations possible and the ways in which test
cases can be invoked in a target.

As a baseline example, unstructured fuzzers use a bytes domain,
i.e., each test case is a byte sequence and fuzzers can apply byte-
level mutations such as swapping bytes, inserting substrings or
mutating bytes. Libprotobuf-mutator (LPM) [5], an example of a
different model-based fuzzer, represents test cases internally as a
tree (a Protocol Buffer object) and therefore uses a tree domain.
Using custom mutators, LPM performs tree-level mutations such as
adding or removing leaves and rearranging subtrees.

We identify four broad classes of model domains as follows:
(1) bytes: Domains that consist of raw byte sequences. (i.e. all

unstructured fuzzers use this domain)
(2) tree: Domains that are tree-like. These inputs typically rep-

resent an abstract syntax tree and are generated with a gram-
mar such as a context-free grammar.

(3) sequence: Domains that consist of a list of items. Each item
in the list can contain additional metadata.

(4) graph: Domains that consist of vertices and edges. We de-
scribe the first implementation of graph-based domains in
this work.

2.2 Anatomy of a Model-based Fuzzer
Model-based fuzzers consist of the following four functions which
operate on their respective model domains:

(1) Generation: seed → D
(2) Mutation: D × seed → D
(3) Crossover: D × D × seed → D
(4) Invocation: D → feedback
The seed enables pseudo-random, yet deterministic behavior. The

feedback metric always consists of at least a binary bug signal (did
the target crash or not?) and typically contains more fine-grained
data such as specific AddressSanitizer [8] issues or code coverage.

Generation-based fuzzers use only the Generation function to
synthesize new test cases. These fuzzers are most applicable in
black-box environments where no coverage information is available
or when it is too complicated to define a Mutation operation. For
example jsfunfuzz [9] and CSmith [6] use hand-crafted rules to
generate realistic JavaScript and C code respectively.

In grey-box environments, mutation is necessary to reap the
benefits of coverage feedback. Mutation-based fuzzers define the
Mutation and/or Crossover operators to synthesize new test cases
by mutating and mixing existing cases from a corpus. Mutation-
based fuzzers such as libFuzzer [3] have demonstrated substantial
efficiency improvements over purely generation-based fuzzers. Cov-
erage feedback has also been employed with success in model-based
fuzzers such as Nautilus [10], a script language fuzzer, and Pythia
[11], a REST API fuzzer.

2.3 API Fuzzing Methods
Most real-world targets contain more than one endpoint:

• a web application provides HTTP endpoints
• a kernel provides system calls
• a C++ library provides public functions

Fuzzing individual endpoints at a time is not sufficient to discover
every bug in a target. Some erroneous behavior only arises from
the interaction of multiple endpoints. API fuzzers attempt to solve
this problem of fuzzing many endpoints at once.

While modern techniques are varied, we identify four broad
methods of API fuzzing and use them to categorize API fuzzers at
a high level:

Method 1: Harness. A standard grey-box harness can be configured
to act as an API fuzzer through manual effort. For example, a devel-
oper can fuzz-test a C++ library by procedurally invoking functions
inside a for-loop and/or switch statement. Typically, a raw byte
sequence from an unstructured fuzzer is used to initialize these
pseudo-random values. For example, in the FuzzedDataProvider
(FDP) approach, the fuzzer byte sequence is interpreted as a byte
stream and values are pulled from this stream to initialize variables
inside the harness. Similarly, one can use libProtobuf-mutator (LPM)
[5] in conjunction with a coverage-guided fuzzer such as libFuzzer
[3] to build a tree-based API fuzzer. For example, in Chromium’s
AppCache fuzzer [12], the Protocol Buffer instance represents a
sequence of IPC calls.

Method 2: Code-gen. Some API fuzzers synthesize and execute pro-
gram source code. This approach is most feasible for script-based

GraphFuzz: Library API Fuzzing with Lifetime-aware Dataflow Graphs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

languages such as JavaScript and Ruby which do not require an ex-
pensive compilation step before execution, however this approach
has also been used to fuzz-test C compilers [6].

While these fuzzers can generate realistic syntax patterns through
the use of context-free grammars or similar models, they often fail
to produce high-level, semantically meaningful code. For exam-
ple, Han et. al [13] noted that 99% of the test cases from jsfunfuzz
[9], a popular JavaScript fuzzer, raise a runtime error after only 3
statements.

Method 3: Harness-gen. Rather than building harnesses by hand,
it is also possible to create systems that generate harnesses auto-
matically or with little manual effort. For example, IMF [14] traces
syscall logs to identify dependencies and synthesizes C harnesses
that can fuzz-test these syscalls. Similarly, FUDGE [7] and FuzzGen
[15] analyze a large code-base of client-side C/C++ code and extract
slices of code to create fuzzer harnesses. While these systems can
generate varied harnesses, the API invocation structure within a
single harness is static at fuzz-time and only the values change.

Method 4: Dynamic. In the dynamic approach to API fuzzing, each
test case represents a full API interaction sequence. The fuzzer
engine dynamically processes each test case, invoking endpoints
one-by-one. For example, in RESTler and Pythia, each test case is
essentially a list of HTTP requests. The key distinction between
dynamic and harness-gen approaches is that in a dynamic fuzzer,
the structure of API interactions is specified at fuzz-time (as part
of the test case) which allows the fuzzer to control both the values
and structure of API calls. While code-gen fuzzers can also change
the structure of API calls at fuzz-time through recompilation (e.g.
CSmith [6]), dynamic fuzzers such as Syzkaller [16] and GraphFuzz
(this work) bypass this expensive recompilation step.

2.4 Recent Model-based API Fuzzers
Manes et al [17] have extensively surveyed the current field of
fuzzing. In this work, we focus specifically on model-based API
fuzzers and narrow down our criteria and categorization to provide
a detailed comparison. In Table 1, we survey a collection of recent
model-based API fuzzers and compare various features (explained
below). The table is primarily organized by the method of API
fuzzing (as described in Section 2.3).

2.4.1 Fuzzer Features. For each fuzzer we list the primary target
type, the model domainD (as described in Section 2.1) and the type
of model used to generate and mutate inputs.

2.4.2 Mutation Engine. In the first column group, we compare
the method of generating and exploring inputs. For each fuzzer,
we list whether it supports generation, mutation, crossover and
collecting coverage information. Generation-based fuzzers such as
jsfunfuzz [9] andCSmith [6] implement only the generation function
while mutation-based fuzzers also implement the mutation and/or
crossover functions. In addition, some fuzzers such as Nautilus
[10] and GraphFuzz (this work) support grey-box, coverage-guided
fuzzing, using feedback from the target program to guide test case
selection and mutation.

2.4.3 API Conformity. For the purposes of API fuzzing it is useful
to compare syntactic and semantic features to understand how well

the fuzzer conforms to a target API specification. In the second
column group we compare the fuzzers based on three constraint
attributes:

• Syntax: The fuzzer produces inputs that conform to lan-
guage syntax rules.

• Endpoint Dependencies: The fuzzer produces inputs that
ensure endpoints with dependencies are invoked after their
dependents.

• Object Lifetimes: The fuzzer manages object lifetimes and
invokes explicit constructors and destructors.

Fuzzers that conform to syntax rules alone will primarily target
the parsing or compilation stage of the target. These fuzzers may
be capable of generating semantically meaningful inputs but it is
not guaranteed, and a large percentage of fuzz-time will be spent
on inputs that are rejected. This level of fuzzing is most-applicable
for script-based languages that target interpreters such as jsfunfuzz
[9], LangFuzz [18], IFuzzer [19] and Nautilus [10].

Fuzzers that understand endpoint dependency requirements can
synthesize inputs where all endpoint arguments are satisfied. For
example, CodeAlchemist [13] maintains a set of JavaScript code
bricks with explicit inputs and outputs and stitches together inputs
that obey dependency rules. Similarly, RESTler [20] understands
REST API dependencies and invokes endpoints that consume spe-
cific parameters only after a request has been made that generates
that parameter (for example, a POST /foo before a GET /foo).

Fuzzers that are lifetime-aware explicitly manage the lifetime
of objects. This ability enables fuzzers to operate in environments
without automatic memory management and enforce semantic
lifetime constrains such as the use of managed pointers. Addition-
ally, these fuzzers can identify issues such as memory leaks and
use-after-free bugs without false positives.

2.4.4 Applicability. In the third column group, we identify whether
each fuzzer requires an input corpus of seed data (i.e. language
grammar examples, client-side code, API traces, etc) and whether
each fuzzer is open-source.

3 DATAFLOW GRAPH-BASED FUZZING
We propose a new technique of dataflow graph-based fuzzing in
which a Library API interaction is represented as a dataflow graph.
We develop algorithms to generate and mutate dataflow graphs
according to a schema and describe how to execute such graphs in
the context of C/C++ libraries. The concept of dataflow graph-based
fuzzing is not restricted to C/C++, and we believe that future works
will apply this technique to new environments.

To introduce the concept of a dataflow graph, we first provide
an example of a bug found by GraphFuzz in the Skia Graphics
Library. Figure 1 contains a snippet of C++ code that triggers a heap-
use-after-free in Skia. In this example, the shrinkTofit method
frees memory that is being used by the SkContourMeasureIter
object. In Figure 2 we show the same bug represented as a dataflow
graph; in short, functions are vertices and objects are edges. The
key concept in GraphFuzz is that these two representations are
equivalent. We can invoke this test case by either compiling and
running the C++ code in Figure 1 or by dynamically executing the
dataflow graph in Figure 2.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Harrison Green and Thanassis Avgerinos

Method Fuzzer Target Domain Model Ge
ne
rat
ion

Mu
tat
ion

Cr
oss
ov
er

Co
ve
rag
e

Sy
nta
x

En
dp
oin
t D
ep
s

Ob
jec
t L
ife
tim
es

Wo
rks

w/
o S
eed
s

Op
en
-so
urc
e

Harness libFuzzer (FDP) Library API bytes Procedural ✓ ✓ ✓ ✓ ✓ ✓1 ✓1 ✓ ✓

Harness libFuzzer (LPM) Library API tree Protobuf ✓ ✓ ✓ ✓ ✓ ✓1 ✓1 ✓ ✓

Code-gen jsfunfuzz (2007) [9] JavaScript bytes Procedural ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Code-gen CSmith (2011) [6] C Compilers bytes CFG ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Code-gen LangFuzz (2012) [18] Script Languages tree CFG ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Code-gen Dharma (2015) [21] Data tree CFG ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Code-gen IFuzzer (2016) [19] Script Languages tree CFG ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

Code-gen Nautilus (2019) [10] Script Languages tree CFG ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Code-gen CodeAlchemist (2019) [13] JavaScript sequence API Spec ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Harness-gen IMF (2017) [14] Kernels - - ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Harness-gen FUDGE (2019) [7] Library API - - ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

Harness-gen FuzzGen (2020) [15] Libary API - - ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓

Harness-gen RULF (2021) [22] Rust API - - ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Dynamic Syzkaller (2015) [16] Syscalls sequence API Spec ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Dynamic RESTler (2019) [20] REST API sequence API Spec ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Dynamic Pythia (2020) [11] REST API sequence RG ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Dynamic GraphFuzz (2021) Library API graph API Spec ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A survey of recent model-based API fuzzers organized by method. 1 requires manual implementation

1 SkPath *path = new SkPath ();
2 path ->moveTo(0, 0);
3 SkContourMeasureIter *iter = new

SkContourMeasureIter ();
4 iter ->reset (*path , false);
5 path ->shrinkToFit ();
6 delete path;
7 iter ->next();
8 delete iter;

Figure 1: The textual representation of crbug.com/1134261:
a heap-use-after-free in the Skia Graphics Library found by
GraphFuzz.

Figure 2: The dataflow graph representation of cr-
bug.com/1134261 (Figure 1).

In this section we formally define the concept and terminol-
ogy of a dataflow graph and we introduce our graph mutation
and completion algorithms. In the following section we introduce
GraphFuzz: an open-source framework for fuzzing C/C++ libraries
with dataflow graphs.

3.1 Library API Specification
Library APIs provide two specifications for developers: Object dec-
larations and Endpoint specifications that consume and produce
the declared Objects.

Definition 3.1 (Object). An object is the abstract specification of
a datatype. We use O𝑥 to denote an object domain and O to signify
the domain of all valid objects.

Definition 3.2 (Endpoint). An endpoint takes in a list of input
objects and returns a list of output objects. For example, an endpoint
E with x inputs and y outputs has a type signature of:

E : O1 × O2 × · · · × O𝑥 → O′
1 × O′

2 × · · · × O′
𝑦

We use the notation E (𝑖) to refer to the i’th input object and
E (𝑖′) to refer to the i’th output object.

Definition 3.3 (Endpoint Driver). Each endpoint is associated
with an endpoint driver that specifies exactly how to convert object
inputs into object outputs. For C/C++ targets, the endpoint driver
is a small function that is compiled into the harness.

Definition 3.4 (Library API). A Library API defines a list of 𝑥
Objects and𝑦 Endpoints:𝐴𝑃𝐼 : O1×O2×· · ·×O𝑥×E1×E2×· · ·×E𝑦

For a C/C++ API, objects consist of structs, classes, enums and
primitive types while endpoints are generally methods. However,
endpoints can be arbitrarily complex snippets of C/C++ code as
described in Section 4.5.

GraphFuzz: Library API Fuzzing with Lifetime-aware Dataflow Graphs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

3.2 Dataflow Graph
Definition 3.5 (DataflowGraph). The dataflow graph is a strongly-
typed directed acyclic graph (DAG) that represents a specific, de-
terministic interaction pattern between endpoints.

G : (𝑉 , 𝐸)

From a fuzzing perspective, each dataflow graph is equivalent to a
traditional fuzzer test case. Vertices in the graph represent instances
of endpoints and edges represent object dependencies: objects that
are produced by one endpoint and consumed by another. For exam-
ple, the edge: 𝐸𝑖 : (𝑉𝑎,𝑉𝑏 , 𝑗, 𝑘) indicates that output 𝑗 of𝑉𝑎 becomes
input 𝑘 of 𝑉𝑏 . Dataflow graphs are strongly typed, so this edge is
only valid if the object type is consistent, i.e. E (𝑗 ′)

𝑎 = E (𝑘)
𝑏

.
A dataflow graph is valid if and only if every vertex has a single

incoming edge for each object input and a single outbound edge
for each object output. Additionally, there can be no directed cycles
in the graph.

3.3 Invoking a Dataflow Graph
Each dataflow graph represents a deterministic, fully-formed inter-
action between endpoints. To invoke a dataflow graph, we generate
an ordering of the vertices such that endpoints with object depen-
dencies are invoked after the endpoints that produce those objects.
Then, we iterate and invoke each endpoint driver in order, passing
objects from one endpoint to the next as necessary.

For example, to execute the dataflow graph in Figure 2, we first
invoke the constructor SkPath(), producing a new SkPath object.
This object is passed to the next endpoint (SkPath::moveTo) which
performs a method call on the object. We can’t yet invoke SkCon-
tourMeasure::reset because we are missing a dependency, so we
first invoke SkContourMeasureIter() to produce a new SkCon-
tourMeasureIter object. Only then can we invoke SkContourMea-
sure::reset, passing both the newly created SkContourMeasureIt-
er object and the SkPath object. Execution continues in this manner
until every vertex has been visited. Each vertex in the graph main-
tains a fuzzable index attribute to break ties in cases where the
ordering is ambiguous.

3.4 Endpoint Context
For some targets, it is unwieldy to track all of the primitive values as
discrete nodes in the graph. An endpoint that consumes an array of
integers of size 100 would naively require 100 inbound connections,
bloating the dataflow graph.

We simplify dataflow graphs by embedding certain objects di-
rectly into the graph vertex metadata. For C/C++ targets, we con-
sider primitive types such as integers, floats and enums to be short-
lived. These objects are not tracked as edges in the graph but rather
their values are embedded directly into a graph vertex.

Specifically, we coalesce all fixed-size, short-lived objects for a
given endpoint into a single context byte string that is stored as
metadata inside a graph vertex. At fuzz-time, these primitive objects
are initialized by deserializing the context byte string and provided
to the corresponding endpoint driver.

Definition 3.6 (Context Byte String). A context byte string con-
sists of the concatenation of 𝑧 fixed-size, short-lived types:

C = O∗
1 ∥O

∗
2 ∥ . . . ∥O

∗
𝑧

where ∥ denotes concatenation of the raw byte representations of
an object’s value.

The context size is the number of bytes required to store all
objects, which is simply the sum of each object’s size:

|C| =
𝑧∑

𝑘=1
|O∗

𝑘
|

For example, |O∗
𝑘
| is implemented as the sizeof operator for

C/C++ targets.

Definition 3.7 (Optimized Endpoint). An optimized endpoint con-
sists of 𝑥 long-lived inputs, 𝑦 outputs and 𝑧 short-lived inputs and
has the following type signature:

E∗ : O1 × O2 × · · · × O𝑥 × C → O′
1 × O′

2 × · · · × O′
𝑦

Each vertex in the dataflow graph maintains an instance of an
endpoint’s context byte string in addition to the endpoint reference:

𝑉 : E × B |C |,B ∈ {0, 1, . . . , 255}

For example, in Figure 2, the short-lived types indicated in blue
(two float inputs and one bool input) are initialized from a context
string rather than a separate endpoint. The endpoint SkPath::move-
To(float,float) has an 8-byte context string which is deserial-
ized into two 4-byte floats. The endpoint SkContourMeasureIt-
er::reset(SkPath,bool) has a 1-byte context string which is
deserialized to initialize the bool value (in this case, only the least-
significant bit of this string is used).

3.5 Fuzzing Dataflow Graphs
The fuzzing process requires the ability to generate and mutate
dataflow graphs. At the surface level, changing the structure of
a dataflow graph (i.e. the vertices and edges) is straightforward.
However, ensuring that each graph as a whole is still valid requires
meeting specific constraints.

If a generated graph is invalid (missing edges or mismatched
edge types), graph execution will produce false positive errors such
as null pointer dereferences or memory leaks. For simplicity, we
split the graph fuzzing problem into two parts, graph mutation and
graph completion:

(1) Mutation (Section 3.6): Generate or mutate a dataflow graph
to form an incomplete graph G′ with potential missing
edges.

(2) Completion (Section 3.7): Add vertices and edges as neces-
sary to form a complete, valid graph G.

3.6 Graph Mutations
In this section we list the graph mutations used by GraphFuzz.
These specific mutations are not required for dataflow graph-based
fuzzing, however in practice, we find them effective for the types
of schemas used in C/C++ libraries. Each mutation acts on a graph
𝐺 to produce an intermediate (potentially incomplete) graph 𝐺 ′.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Harrison Green and Thanassis Avgerinos

Figure 3: GraphFuzz Mutations

Following every mutation, the graph completion algorithm (Sec-
tion 3.7) acts on 𝐺 ′ to produce a valid, fully-formed graph 𝐺∗. A
graphical representation of these mutations is shown in Figure 3.

3.6.1 Graph Mutations.

(1) SpliceIn: Splice a new endpoint between two existing end-
points. Given an existing edge (𝑉𝑎,𝑉𝑏 , 𝑖, 𝑗), add a new vertex
𝑉𝑘 and replace the old edge with two new edges: (𝑉𝑎,𝑉𝑘 , 𝑖, ∗)
and (𝑉𝑘 ,𝑉𝑏 , ∗, 𝑗).

(2) SpliceOut: The opposite of the SpliceIn mutation. Given,
a pair of edges (𝑉𝑎,𝑉𝑘 , 𝑖, ∗) and (𝑉𝑘 ,𝑉𝑏 , ∗, 𝑗) where E (𝑖′) =

E (𝑗) , remove the pair of edges and 𝑉𝑘 and add a direct edge
from 𝑉𝑎 to 𝑉𝑏 : (𝑉𝑎,𝑉𝑏 , 𝑖, 𝑗).

(3) Crosslink: Sample two vertices 𝑉𝑎 and 𝑉𝑏 at random such
that E (𝑗 ′) = E (𝑘) for some 𝑗, 𝑘 . Remove the existing edges
(𝑉𝑎, ∗, 𝑗, ∗) and (∗,𝑉𝑏 , ∗, 𝑘), and add a new internal edge be-
tween 𝑉𝑎 and 𝑉𝑏 : (𝑉𝑎,𝑉𝑏 , 𝑗, 𝑘). If this mutation splits the
graph into multiple disconnected parts, keep only the sub-
graph containing 𝑉𝑎 and 𝑉𝑏 .

(4) Context: Sample a vertex 𝑉𝑘 with a non-zero sized context
byte string (|𝐶𝑘 | > 0) and invoke libFuzzer’s builtin mutator
(LLVMFuzzerMutate) on 𝐶𝑘 .

(5) Priority: Sample two vertices 𝑉𝑎 and 𝑉𝑏 at the same layer
and swap their vertex indexes, reversing vertex priority dur-
ing graph execution.

(6) Swap: Sample a random vertex 𝑉𝑎 and replace it with a dif-
ferent endpoint of the same signature. By definition, the two
endpoints are compatible with the existing graph structure
so no further structural modification needs to be done.

(7) TruncateDestructor: Sample a vertex 𝑉𝑘 such that E𝑘 =

(· · · → · · · × O′
𝑗
× . . .). Remove the edge (𝑉𝑘 , ∗, 𝑗, ∗) and if

this splits the graph into two disconnected parts, keep only
the subgraph with 𝑉𝑘 .

(8) ExtendDestructor: Sample a vertex 𝑉𝑘 such that E𝑘 =

(O → ∅). Replace this vertex with a new vertex𝑉 ′
𝑘
such that

E𝑘 = (· · · ×O𝑗 × · · · → . . .) and replace the edge (∗,𝑉𝑘 , ∗, 0)
with a new edge (∗,𝑉 ′

𝑘
, ∗, 𝑗).

(9) TruncateConstructor: Sample a vertex 𝑉𝑘 such that E𝑘 =

(· · · × O𝑗 × · · · → . . .). Remove the edge (∗,𝑉𝑘 , ∗, 𝑗) and if
this splits the graph into two disconnected parts, keep only
the subgraph with 𝑉𝑘 .

(10) ExtendConstructor: Sample a vertex 𝑉𝑘 such that E𝑘 =

(∅ → O′). Replace this vertex with a new vertex 𝑉 ′
𝑘
such

that E𝑘 = (· · · → · · · × O′
𝑗
× . . .) and replace the edge

(𝑉𝑘 , ∗, 0, ∗) with a new edge (𝑉 ′
𝑘
, ∗, 𝑗, ∗).

3.6.2 Graph Crossover. Given two graphs G𝑎 and G𝑏 , invoke the
Crosslink mutation on two vertices 𝑉𝑎 ∈ G𝑎 and 𝑉𝑏 ∈ G𝑏 .

3.6.3 Graph Generation. Initialize a new graph 𝐺 with a single,
random endpoint E and invoke the graph completion algorithm.

3.7 Graph Completion
We now introduce the graph completion algorithm that is used in
graph generation and mutation to complete a partial graph G′. We
reduce the graph completion problem into several smaller problems
of satisfying missing edges in a graph. To this end, we propose the
sub-problem of edge completion:

Definition 3.8 (Edge Completion). Given an object output of type
O∗, the goal is to generate a subgraph G∗ that is valid except for
a single missing input edge of type O∗. Note that the problem is
symmetrical to the case where given an object input of type O∗ we
want to generate a subgraph missing the corresponding output.

An incomplete graph G′ can be completed by invoking the edge
completion algorithm for everymissing input and output and linking
the generated subgraphs.

A naive, probabilistic approach to edge completion such as ran-
domly sampling viable endpoints tends to generate extremely large
graphs or fails to return a solution at all (instead the graph grows
endlessly). It is possible to enforce certain cutoff rules, such as sam-
pling endpoints with fewer connections with a higher probability
but such heuristics are graph schema-dependent and we empiri-
cally found that they do not always work. Additionally, the edge
completion algorithm runs several times per mutation, which may
itself run 4 or 5 times per fuzzer iteration; a fast implementation is
critical for fuzzer performance.

OurGraphFuzz implementation of edge completion pre-computes
every possible subgraph for a given target object O∗ by performing
a breadth-first search of depth 𝑘 over the graph schema. The sub-
graphs are stored in an probability-encoded tree structure (referred
to as a TypeTree). At fuzz-time, the edge completion algorithm
can sample subgraphs for any object type in constant time. These
pre-computed trees are cached on disk which speeds up parallel
fuzzing. For example, in libFuzzer -fork mode, a newly spawned
thread can instantly retrieve the subgraph solutions.

In GraphFuzz, this pre-computation step also performs schema
validation. Warnings are displayed if there are any endpoints in the

GraphFuzz: Library API Fuzzing with Lifetime-aware Dataflow Graphs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

schema which are unreachable or unsatisfiable (i.e. cannot exist in
a valid graph).

3.8 Graph Minimization
Crashing test cases often contain unnecessary cruft that can be
removed to obtain a minimal reproducer. Although simplistic, we
find that by randomly invoking mutations and retaining only those
graphs which exhibit the same crash and are smaller, we obtain
dataflow graphs close to the size of hand-minimized examples.

4 GRAPHFUZZ FOR C/C++
In this section, we describe GraphFuzz: an implementation of data-
flow graph-based fuzzing designed to fuzz-test C and C++ libraries.
We have released this framework along with documentation and
example code under https://github.com/ForAllSecure/GraphFuzz.

4.1 Overview
GraphFuzz consists of two parts:

• libgraphfuzz: A core framework written in C++ which per-
forms dataflow graph mutations and is linked into the fuzz
harness.

• gfuzz: A Python command-line tool used to generate har-
nesses files and perform miscellaneous tasks such as graph
minimization and automatic schema extraction.

4.2 GraphFuzz Schema
The core of a GraphFuzz harness is the schema. A schema is de-
fined in a human-readable YAML file and contains a list of the
API endpoints and object types available in a Library API. Using
the schema, GraphFuzz automatically generates the exec and write
fuzzer harnesses.

An example, partial schema for the Skia SkPath API is shown
in Figure 4. This harness found a UAF in SkContourMeasureIter
(https://crbug.com/1134261). GraphFuzz understands C and C++
function signatures and often times, this is the only information
needed to define an endpoint.

4.3 Harnessing
Harnessing a target with GraphFuzz requires the following 5 steps,
visualized in Figure 5:

(1) Instrumentation: Compile the target library with fuzzer
coverage. With clang for example, this just requires adding
the -fsanitize=fuzzer flag.

(2) Schema Inference (optional): Using gfuzz, run the schema
extractor tool to automatically extract classes, structs, enums,
typedefs andmethods from library source code into a schema.
The generated schema is a starting point for further modifi-
cation.

(3) Manual Revision: Applying an understanding of the Li-
brary API requirements, manually fix up the schema by
adding/removing classes, adding functions or redefining the
input and output types of a function.

(4) Harness Generation: Run gfuzz on the schema to auto-
matically generate two versions of the harness: fuzzExec
executes the dataflow graphs while fuzzWrite converts the

1 typedef_SkScalar:
2 type: typedef
3 name: SkScalar
4 value: float
5
6 struct_SkPath:
7 ...
8 methods:
9 - SkPath ()
10 - void moveTo(SkScalar x, SkScalar y)
11 ...
12 - void shrinkToFit ()
13 - void close()
14
15 struct_SkContourMeasureIter:
16 ...
17 methods:
18 - SkContourMeasureIter ()
19 - SkContourMeasureIter(const SkPath &path ,
20 bool forceClosed , SkScalar resScale)
21 - sk_sp <SkContourMeasure > next()
22 ...

Figure 4: A partial GraphFuzz harness for the Skia SkPath
API. This harness includes function signatures for methods
on the SkPath and SkContourMeasureIter structs in addition
to SkVector, SkPoint and SkContourMeasure (not shown).

Figure 5: An overview of the GraphFuzz harnessing process.

dataflow graphs to plain C/C++ source code which can be
recompiled externally.

(5) Compilation/Linking: Link both harness variants to the
target library to produce native libFuzzer executables.

4.4 Endpoint Driver Specification
In GraphFuzz, an endpoint specification is represented with the
following four components:

• inputs: a list of endpoint input types
• outputs: a list of endpoint output types
• args: a list of context-based endpoint input types
• exec: an endpoint driver template (C/C++ code)

These attributes can either be defined manually or a developer
can simply provide a C/C++ function signature and GraphFuzz will
attempt to generate the endpoint specification automatically. In real
world targets, we observe that full, manual endpoint definitions are

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Harrison Green and Thanassis Avgerinos

1 inputs: ["SkPath"]
2 outputs: ["SkPath"]
3 args: ["float", "float"]
4 exec: |
5 $i0 ->moveTo($a0 , $a1);
6 $o0 = $i0;

Figure 6: A full endpoint driver specification for Sk-
Path::moveTo(SkScalar, SkScalar).

1 struct_SkPath:
2 ...
3 - int getPoints(SkPoint points[], int max):
4 inputs: ["SkPath"]
5 outputs: ["SkPath"]
6 args: ["int"]
7 exec: |
8 SkPoint points [1024];
9 unsigned int max = $a0 % 1025;
10 $i0 ->getPoints (&points , max);
11 $o0 = $i0;

Figure 7: A custom endpoint definition for
SkPath::getPoints(SkPoint[], int).

only required roughly 10% of the time. For the remaining cases, the
function signature itself is sufficient.

The endpoint driver template (exec) is a snippet of C/C++ code
that is exposed to several additional GraphFuzz-specific macros.
Inside the endpoint driver template, $iN, $oN, and $aN refer to the
N’th input, output, and argument respectively. Inputs and outputs
have pointer types while arguments can be referenced directly as
raw types.

For example, the void moveTo(SkScalar, SkScalar) signa-
ture defined on the SkPath struct in Figure 4 is converted into
the full endpoint specification in Figure 6. GraphFuzz recognizes
that this is a method call and automatically generates the correct
input/output dependencies and execution driver template.

4.5 Custom Endpoint Drivers
Certain endpoints have implicit requirements about usage that are
not inferable from the function signature alone. In these cases, a de-
veloper can extend the exec template to customize the specification
of an endpoint.

For example, the method SkPath::getPoints(SkPoint[] po-
ints, int max) is used to retrieve points from the underlying
path object. The points array must have space for max entries and
will be filled in during execution. While GraphFuzz cannot infer
these constraints from the function signature, they can be manually
defined in the GraphFuzz schema.

We incorporate this semantic knowledge into the schema by
defining a custom endpoint as in Figure 7. In this endpoint, we
manually allocate a SkPath array on the stack with size 1024. Then
we invoke SkPath::getPointswith this array and a max parameter
which is bounded to the range 0-1024.

4.6 Fuzzing Process
GraphFuzz is implemented as a custom mutation engine on top
of libFuzzer [3]. Hence, the resulting binaries are native libFuzzer
executables and are compatible with existing fuzzing infrastructure
such as OSS-Fuzz. The fuzzing process (Figure 8) consists of the
following steps:

(1) Selection: LibFuzzer selects inputs to mutate.
(2) Mutation: GraphFuzz interprets each corpus input as a se-

rialized dataflow graph (section 3.2) and applies graph-level
mutations (section 3.6).

(3) Execution: GraphFuzz executes the dataflow graph (section
3.3) by performing a dynamic traversal of the vertices, ex-
ecuting corresponding endpoint drivers as necessary. The
fuzzExec harness executes actual target code while the fuz-
zWrite harness converts nodes to corresponding source code
output.

(4) Coverage Feedback: Feedback from the target (in the form
of edge coverage, value coverage, etc.) is collected by lib-
Fuzzer and used to guide corpus growth and selection.

5 EVALUATION
We used GraphFuzz to fuzz-test 5 real-world C and C++ libraries.
In this section we discuss challenges and results from our fuzzing
campaigns. We also include several examples of the types of bugs
found with GraphFuzz.

During our research, we sought to establish a quantitative, head-
to-head benchmark. This endeavor proved difficult simply because
there are not many existing harnesses that can test a large set of
API endpoints at once — most existing harnesses only test one or
two endpoints at a time, and therefore GraphFuzz could easily get
more coverage by invoking more endpoints. However, we were
able to find 10 harnesses in the Skia project which fuzzed between
6 to 350 endpoints at a time. We used these harnesses to establish a
quantitative benchmark that we discuss in more detail in Section
5.2.2.

We found hard bugs (i.e. segfaults, use-after-free, buffer-overfl-
ows) in 4 of the 5 libraries we fuzzed and we found soft bugs (in-
ternal assertion errors) in every library. Since most of these bugs
require API control to trigger, they are naturally less likely to man-
ifest as security vulnerabilities. However we did find potential
security vulnerabilities in both Skia and RDKit.

5.1 Implementation
All of the fuzzing experiments described in the following sections
were performed on a 128-core AMD EPYC 7601 cluster with 512
GB of RAM. Fuzzer harnesses were compiled in an Ubuntu 18.04
or Ubuntu 20.04 Docker container using clang-10. For exploratory
fuzzer runs, we used between 1 and 32 cores in libFuzzer fork mode.
The Skia benchmark was performed with 4 cores per harness.

We provide all of the harnesses and supporting code to reproduce
these experiments in the GraphFuzz repository.

5.2 Skia Graphics Library
Skia [23] is a a mature, C++ graphics library, maintained by Google
and used in high-profile projects such as Chromium and Android.

GraphFuzz: Library API Fuzzing with Lifetime-aware Dataflow Graphs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 8: GraphFuzz Fuzzing process. 1. Corpus inputs are selected by libFuzzer 2. GraphFuzz applies semantic graphmutations
3. Inputs are invoked through a dynamic traversal of the dataflow graph 4. Coverage feedback is collected and used to guide
corpus growth and selection.

The Skia codebase has been rigorously tested by Google security en-
gineers, independent bug bounty hunters and the OSS-Fuzz project.
Cumulatively billions of CPU hours have been spent fuzz-testing
Skia.

As a graphics library, the core Skia API contains dozens of ob-
jects representing graphics primitives and thousands of functions
that operate with these objects. Due to Skia’s use in high-profile
projects such as Chromium and Android, many of these internal
APIs are potentially attacker-controlled. A malicious webpage can
use specially crafted SVG or the JavaScript Canvas API to induce
specific API calls in the renderer process.

During our research, we found hundreds of unique assertion
errors. We also found and reported 3 security vulnerabilities in Skia.
One we show in Figure 1.

5.2.1 Existing Harnesses. Due to its security importance, consid-
erable time has been spent to develop fuzzing harnesses for Skia.
Currently there are 37 separate libFuzzer targets in the Skia repos-
itory, most of which are fuzz-tested at scale as part of OSS-Fuzz.
The majority of these harnesses isolate one specific endpoint such
as a deserialize function or a compile_shader function.

Several of these harnesses use the FuzzedDataProvider approach
to test a wide array of API endpoints at once. For example, the
fuzz_draw_functions harness simulates drawing random shapes
and paths to a canvas.

5.2.2 Head-to-head Benchmark. We selected 10 existing structure-
aware, OSS harnesses from the Skia project as a baseline. For each
existing harness, we created an equivalent GraphFuzz harness de-
signed to fuzz exactly the same API surface. While in practice, it
is not necessary to constrain GraphFuzz in this way, limiting the
fuzzable API surface allows us to construct a fair head-to-head
benchmark and ensure any differences in generated coverage are
due to the flexibility and efficiency by which both variants can
fuzz-test API interactions and not simply the number of fuzzable
endpoints.

On average, for each GraphFuzz harness, we were able to ac-
curately specify the usage semantics of 90% of target endpoints

using only the function signatures. The remaining 10% of cases
required minimal revision, for example to specify the usage of an
array argument or constrain the domain of an input argument. See
the “Auto” column in Table 2 for a breakdown by harness.

We performed 5 independent, 48-hour fuzz sessions for each
harness using 4-cores in libFuzzer’s fork mode. Each harness was
linked against the exact same Skia build. After the designated period,
we computed line coverage over the whole corpus using a gcov-
instrumented version of each harness. For comparison purposes we
compiled a second, instrumented version of each harness called the
dry harness which is identical to the original harness except it does
not invoke the target API. This dry harness allows us to account
for differences in coverage due to the way both harnesses read
and prepare test cases. For example, both the OSS and GraphFuzz
harnesses use a small percentage of the Skia API to prepare data
streams and set up the fuzz environment. We can use the difference
in coverage between the normal harness and the dry harness to
isolate only the code coverage that is due to actual target API
fuzzing.

Specifically, given𝐶𝑜𝑠𝑠 and𝐶𝑔𝑓 (set of covered lines for OSS and
GraphFuzz respectively) and the dry harness coverage: 𝐶 ′

𝑜𝑠𝑠 and
𝐶 ′
𝑔𝑓

(set of covered lines in the dry harness variants), we compute
the shared fuzzer core coverage 𝑅 = 𝐶 ′

𝑜𝑠𝑠 ∪ 𝐶 ′
𝑔𝑓

(i.e. the uninter-
esting code coverage due to harness-specific mechanics). Then we
compute the normalized line coverage as 𝑁𝑜𝑠𝑠 = |𝐶𝑜𝑠𝑠 − 𝑅 | and
𝑁𝑔𝑓 = |𝐶𝑔𝑓 − 𝑅 |.

To obtain temporal coverage information, we parsed the lib-
Fuzzer log output which contains both the elapsed time and a
libFuzzer internal cov metric for many data points over the 48-
hour period. This cov metric is not directly comparable between
harnesses since it includes harness-specific coverage information.
However, with the assumption that this metric scales roughly lin-
early with the true normalized line coverage (𝑁𝑜𝑠𝑠 and 𝑁𝑔𝑓), we
graph a linearly-scaled version of the libFuzzer cov metric such
that the final datapoint matches 𝑁𝑜𝑠𝑠 or 𝑁𝑔𝑓 exactly. This chart
provides a visual cue for the evolution of the fuzzer corpora over
time.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Harrison Green and Thanassis Avgerinos

5.2.3 Benchmark Results. Fuzzer coverage is graphed in Figure 9
and we provide statistical information in Table 2.

In the best cases, the GraphFuzz harness generated nearly 9x as
much line coverage compared to the baseline and in the worse cases,
the GraphFuzz harness was roughly equivalent to the baseline.

In general, we see the largest coverage improvements with
GraphFuzz on the larger harnesses. Intuitively, more endpoints
means there are more opportunities for novel interactions. Man-
ually defined harnesses miss these interactions unless they are
specifically programmed to test them.

For small harnesses such as api_regionop, api_pathop and
api_path_measure, the GraphFuzz harnesses are roughly equiva-
lent to the existing Skia harnesses. Both harness variants quickly
explore the majority of the state-space and plateau.

In larger harnesses such as api_svg_canvas and api_draw_fun-
ctions, GraphFuzz continues to find new coverage until the end
of the 48 hour period while the baseline harness plateaus early on.

5.3 Other OSS Targets
5.3.1 RDKit. RDKit [24] is a cheminformatics library written in
C++ with Python bindings for most of the API. Typical usage in-
volves constructing and manipulating many different objects such
as RDMol, RDAtom, and RDBond (representing molecules, atoms, and
bonds respectively).

RDKit has been continuously fuzzed as part of OSS-Fuzz since
May 2020. Despite this, we found 10+ bugs with GraphFuzz (in-
cluding heap-use-after-free and segmentation faults) after fuzzing
a small portion of the RDKit API surface. Most of these bugs were
also reachable from the Python API bindings. We disclosed three
security relevant bugs to the RDKit developers.

5.3.2 SQLite. SQLite [25] is a small SQL database library written
in C. It is used in Chrome, Android and hundreds of other projects.
We spent a few days harnessing most of the SQLite3 C API with
GraphFuzz. We identified two crashing test cases requiring 5 and 15
endpoints respectively. In the first case, GraphFuzz discovered that
setting the SQLITE_LIMIT_LENGTH to 0 would crash a subsequent
sqlite3_prepare_v2 statement. In the second, GraphFuzz found
a way to crash SQLite by invoking three online backups at once in a
specific order. Due to the way SQLite is used in the wild, these bugs
are unlikely to manifest as security vulnerabilities. However, for a
heavily-fuzzed library like SQLite, it is impressive that GraphFuzz
could discover these bugs.

5.3.3 Eigen. Eigen3 [26] is a C++ template library for linear algebra.
It is used in projects such as TensorFlow and Chromium. We found
this target particularly interesting to harness due to the extensive
use of templates. Although GraphFuzz does not currently support
C++ template syntax natively, it is possible to define schemas that
use fixed-argument template functions. We used GraphFuzz to fuzz-
test a subset of the matrix and vector API. Although we did not
find any crashing bugs, we discovered test cases that reach dozens
of unique assertions in the Eigen core library.

5.3.4 IOWOW. IOWOW [27] is a key/value storage library written
in C. The provided API allows a user to create and destroy database
objects and store/retrieve key-value pairs consisting of arbitrary
byte-string data. We spent less than a day configuring a schema

for IOWOW and fuzzing it and identified two crashing bugs within
minutes of starting the fuzzer. In the first, GraphFuzz discovered
that adding metadata to a database object with iwkv_db_set_meta
and then destroying the database (iwkv_db_destroy) would cause
a use-after-free upon closing the containing IWKV instance. In the
second, GraphFuzz identified that initializing a database with the
IWDB_VNUM64_KEYS flag and then invoking iwkv_cursor_open on
the database using a lookup key of size 0 would trigger a segmen-
tation fault. We reported both of these bugs to the maintainers and
they were quickly patched in the latest version.

6 LIMITATIONS
6.1 Automation
While GraphFuzz can automatically synthesize a schema from a
list of function signatures, we find that function signatures alone
are not always sufficient to describe the usage requirements of
an endpoint. For example, in the C function void foo(bar *b),
argument b could be an input, an output, or both. Similarly, in the
function void sum(int arr[], int N), there may be a “hidden”
correlation between arr and N where the size of arr is expected to
be at least N.

During our experiments, we observe that roughly 90% of end-
points (see table 2) can be accuratelymodeledwith only the function
signature while the remaining 10% require human-curated custom
endpoint definitions. The development of systems which can au-
tomatically infer (or search) these implicit constraints in Library
APIs is an interesting area for future research.

6.2 False Positives
Given an incorrect schema, GraphFuzz can generate false positive
crashes do to invalid API usage. In other words, generated graphs
are only as accurate as the provided schema. Users of GraphFuzz
need to take care to ensure that the GraphFuzz schema aligns with
the target Library API. We call this problem schema alignment.

In practice, we observe two distinct types of schema alignment
issues:

6.2.1 Type 1: Single-endpoint Semantics. Given a schema with an
incorrectly specified endpoint (such as the examples in Section
6.1), GraphFuzz will quickly and frequently generate false positive
crashes. These issues are both easy to diagnose and easy to correct
by manually redefining the endpoint.

6.2.2 Type 2: Multi-endpoint Semantics. Some Library APIs have
hard-to-model usage requirements that span multiple endpoints.
For example, one API pattern we observe in Skia is the use of a
shared pointer sk_sp<Foo> along with a Foo *refFoo() method.
The returned Foo pointer is valid as long as the original sk_sp<Foo>
object has not been destroyed. In this case, modeling the usage re-
quirements is more difficult than simply modeling each endpoint.
A user needs to create a schema such that sk_sp<Foo> cannot be
destroyed while a Foo pointer is still used elsewhere. For example,
it is possible to define a synthetic type in the GraphFuzz schema
which bundles the returned Foo pointer along with the original
sk_sp<Foo> object such that the sk_sp<Foo> object cannot be de-
stroyed until the Foo pointer is released.

GraphFuzz: Library API Fuzzing with Lifetime-aware Dataflow Graphs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0h 12h 24h 36h 48h

0

5

10

15

20
api_draw_functions

0h 12h 24h 36h 48h

0

5

10

api_raster_n32_canvas

0h 12h 24h 36h 48h

0

2

4

6

8

api_null_canvas

0h 12h 24h 36h 48h

0

5

10

api_pathop

0h 12h 24h 36h 48h

0.0

0.5

1.0

1.5

api_polyutils

0h 12h 24h 36h 48h

0

5

10

api_svg_canvas

0h 12h 24h 36h 48h

0

5

10

api_mock_gpu_canvas

0h 12h 24h 36h 48h

0.0

0.2

0.4

0.6

api_regionop

0h 12h 24h 36h 48h

0.0

0.5

1.0

api_path_measure

0h 12h 24h 36h 48h

0

2

4

region_set_path

GraphFuzz

Baseline

Average Coverage

Figure 9: GraphFuzz vs. OSS-Fuzz harnesses on 10 Skia benchmarks. Each line shows a complete, 48-hour fuzz session on 4
cores. The x-axis shows elapsed time (in hours) and the y-axis shows normalized line coverage (in thousands). The bold lines
(indicated by the marker) show the average coverage from GraphFuzz and OSS respectively across the 5 runs.

Harness Endpoints Auto Baseline NLC GraphFuzz NLC Coverage Δ
api_draw_functions 72 90% 12,770 ± 497 18,486 ± 1,206 1.45x
api_raster_n32_canvas 350 84% 3,152 ± 1,336 8,964 ± 1,640 2.84x
api_null_canvas 350 84% 2,114 ± 267 8,152 ± 371 3.86x
api_pathop 19 100% 13,752 ± 7 13,568 ± 158 0.99x
api_polyutils 7 86% 999 ± 0 1,535 ± 1 1.54x
api_svg_canvas 350 84% 2,455 ± 23 10,778 ± 558 4.39x
api_mock_gpu_canvas 350 84% 12,089 ± 292 12,452 ± 1,061 1.03x
api_regionop 6 100% 676 ± 0 669 ± 8 0.99x
api_path_measure 17 100% 1,273 ± 0 1,293 ± 0 1.02x
region_set_path 53 85% 584 ± 0 5,264 ± 10 9.01x

Table 2: Skia benchmark results. NLC = Normalized Line Coverage, reported as (mean ± std) for 5 fuzzer runs. Coverage Δ =
average increase in coverage gained by GraphFuzz over the baseline (1x means no change). Auto = percentage of endpoints
specified using only the function signature.

This solution is effective at preventing false positives but is a
stop-gap for a more complex problem and limits the flexibility of
generated graphs. Further research is needed to design solutions
that enable more accurate modeling of multi-endpoint semantics.

7 CONCLUSION
In this paper, we introduced the technique of dataflow graph-based
fuzzing which is designed to fuzz-test Library API’s. We describe
this approach in the context of fuzzing C and C++ libraries and we
release our implementation of dataflow graph-based fuzzing called
GraphFuzz as an open-source framework. We validate our approach
on five real-world targets and demonstrate that GraphFuzz can find
real bugs and outperform hand-crafted harnesses in quantitative
benchmarks at a fraction of the development cost. Often times,
the only information required to fuzz with GraphFuzz is a list of
function signatures in a target.

REFERENCES
[1] K. Serebryany, “Oss-fuzz-google’s continuous fuzzing service for open source

software,” 2017.
[2] “Fuzzing for safety critical systems.” https://forallsecure.com/safety-critical. Ac-

cessed: 2021-09-03.
[3] K. Serebryany, “libfuzzer–a library for coverage-guided fuzz testing,” LLVM

project, 2015.
[4] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program

analysis & transformation,” in International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pp. 75–86, IEEE, 2004.

[5] “google/libprotobuf-mutator,” June 2021. original-date: 2017-01-11T22:57:02Z.
[6] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in c

compilers,” in Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, pp. 283–294, 2011.

[7] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux, L. Szekeres,
and W. Wang, “Fudge: fuzz driver generation at scale,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 975–985, 2019.

[8] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer:
A fast address sanity checker,” in 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), pp. 309–318, 2012.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Harrison Green and Thanassis Avgerinos

[9] J. Ruderman, “Introducing jsfunfuzz,” URL http://www. squarefree.
com/2007/08/02/introducing-jsfunfuzz, vol. 20, pp. 25–29, 2007.

[10] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert,
“Nautilus: Fishing for deep bugs with grammars.,” in NDSS, 2019.

[11] V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray, “Pythia:
grammar-based fuzzing of rest apis with coverage-guided feedback and learning-
based mutations,” arXiv preprint arXiv:2005.11498, 2020.

[12] “chromium/src.git - Git at Google.”
[13] H. Han, D. Oh, and S. K. Cha, “Codealchemist: Semantics-aware code generation

to find vulnerabilities in javascript engines.,” in NDSS, 2019.
[14] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,” in Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, pp. 2345–
2358, 2017.

[15] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “Fuzzgen: Automatic fuzzer gen-
eration,” in 29th {USENIX} Security Symposium ({USENIX} Security 20), pp. 2271–
2287, 2020.

[16] D. Vyukov, “Syzkaller,” 2015.
[17] V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo,

“The Art, Science, and Engineering of Fuzzing: A Survey,” IEEE Transactions on

Software Engineering, pp. 1–1, 2019.
[18] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in 21st

{USENIX} Security Symposium ({USENIX} Security 12), pp. 445–458, 2012.
[19] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer: An evolutionary inter-

preter fuzzer using genetic programming,” in European Symposium on Research
in Computer Security, pp. 581–601, Springer, 2016.

[20] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api fuzzing,”
in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 748–758, IEEE, 2019.

[21] “MozillaSecurity/dharma,” May 2021. original-date: 2015-03-25T17:56:23Z.
[22] J. Jiang, H. Xu, and Y. Zhou, “Rulf: Rust library fuzzing via api dependency graph

traversal,” arXiv preprint arXiv:2104.12064, 2021.
[23] “Skia: The 2d graphics library.” https://skia.org/. Accessed: 2021-09-03.
[24] “Rdkit: Open-source cheminformatics.” http://www.rdkit.org. Accessed: 2021-09-

03.
[25] “Sqlite: In-memory database.” https://www.sqlite.org/. Accessed: 2021-09-03.
[26] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.
[27] “Iowow: C11 key/value database engine.” https://iowow.io/. Accessed: 2021-09-03.

